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Abstract Despite the large number of studies that have

investigated the use of wearable sensors to detect gait

disturbances such as Freezing of gait (FOG) and falls, there

is little consensus regarding appropriate methodologies for

how to optimally apply such devices. Here, an overview of

the use of wearable systems to assess FOG and falls in

Parkinson’s disease (PD) and validation performance is

presented. A systematic search in the PubMed and Web of

Science databases was performed using a group of concept

key words. The final search was performed in January

2017, and articles were selected based upon a set of eli-

gibility criteria. In total, 27 articles were selected. Of those,

23 related to FOG and 4 to falls. FOG studies were per-

formed in either laboratory or home settings, with sample

sizes ranging from 1 PD up to 48 PD presenting Hoehn and

Yahr stage from 2 to 4. The shin was the most common

sensor location and accelerometer was the most frequently

used sensor type. Validity measures ranged from 73–100%

for sensitivity and 67–100% for specificity. Falls and fall

risk studies were all home-based, including samples sizes

of 1 PD up to 107 PD, mostly using one sensor containing

accelerometers, worn at various body locations. Despite the

promising validation initiatives reported in these studies,

they were all performed in relatively small sample sizes,

and there was a significant variability in outcomes mea-

sured and results reported. Given these limitations, the

validation of sensor-derived assessments of PD features

would benefit from more focused research efforts,

increased collaboration among researchers, aligning data

collection protocols, and sharing data sets.

Keywords Parkinson’s disease � Ambulatory monitoring �
Wearable sensors � Validation studies

Introduction

Parkinson’s disease (PD) is a progressive neurodegenera-

tive disease characterized by four major motor signs: rest

tremor, rigidity, bradykinesia, and postural instability [1].

Non-motor impairments, including executive dysfunctions,

memory disturbances, and reduced ability to smell, are also

seen in the disease [2–4]. Gait difficulties and balance

issues are a disabling problem in many patients with PD,

with different contributing factors, such as freezing of gait

(FOG), festination, shuffling steps, and a progressive loss

of postural reflexes. Its importance is underlined by a high

prevalence of fall incidents in PD, especially in the later

stages of the disease [5–7].
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FOG is defined as a sudden and brief episode of inability

to produce effective forward stepping [8]. The phenomenon

is closely related to falls, appearing mainly during gait ini-

tiation, turning while performing a concomitant concurrent

activity (i.e., dual tasks), or approaching narrow spaces

[9–13]. Similar to FOG, fall episodes occur mainly during a

half-turn or while dual tasking [6]. With disease progression,

the increase of FOG and falling episodes, as well as the

decrease in effectiveness of dopaminergic therapy amplify

the burden related to these symptoms [6, 12, 14].

The management of gait disturbances, such as FOG and

falls, often includes pharmacological interventions [12].

However, there is a growing interest in non-pharmacolog-

ical interventions, such as physiotherapy [15], deep brain

stimulation [16], or cueing devices [17, 18]. In all cases,

reliable tools are required to determine the severity of gait

disorders and evaluate the efficacy of interventions [5].

A number of subjective rating scales are used to evaluate

motor symptoms, but most of them have limited validity and

reliability [19]. To overcome these limitations, wearable

sensors are emerging as new tools to objectively and con-

tinuously obtain information about patients’ motor symp-

toms [20–22]. These sensors, typically consisting of

embedded accelerometers, gyroscopes and other, have been

used to determine PD-related symptoms, including gait

disorders [17, 18, 23–28]. They can act as an extension of

health-professionals’ evaluation of PD symptoms, improv-

ing treatment, and augmenting self-management [29, 30].

Despite a large number of studies that investigated the use of

wearable sensors to detect gait disturbances, such as FOG and

falls, there is little agreement regarding the most effective

system design, e.g., type of sensors, number of sensors, location

of the sensors on the body, and signal processing algorithms.

Here, we provide an overview of the use of wearable systems to

assess FOG and falls in PD, with emphasis on device setup and

results from validation procedures.

Review methodology

A systematic search in the PubMed and Web of Science

databases was performed in accordance with the PRISMA

statement [31]. These databases were chosen to allow both

medical and engineering journals to be included in the

search process.

The search query, based on the PICO strategy [31],

included Parkinson’s disease representing the Population,

wearable, sensors, device representing the Intervention and

falls or freezing of gait representing the Comparison.

Outcome was not included as a key word to keep the query

broad. The truncation symbol (*) and title/abstract filter

were used to both broaden the search and provide more

specificity. The final search query is shown in Table 1.

The final search was performed in January 2017. In

addition to the database search, a search in the references

of review articles and book chapters that appeared during

the search was performed. The goal was to identify

potentially eligible articles absent in the database search.

Articles were selected based upon a set of eligibility cri-

teria. As the objective of this review was to provide an

overview of articles published on the topic, selection criteria

were kept broad. Therefore, studies were included if they (1)

present original research on the validation of wearable sen-

sors (i.e., a single or combination of body worn computer/

sensor [32, 33]) to detect, measure or monitor FOG, falls, or

fall risk and (2) were performed in Parkinson’s disease

patients. Studies were excluded if they (1) only used wear-

ables to deliver cueing for FOG, (2) were published in lan-

guages other than English, or (3) did not provide sufficient

information about study design and results.

Data extraction was performed using a predefined table.

Variables extracted included: author, sample size, device

usage (i.e., type of sensor, number of sensors, and location

of the device), data collection procedures, and validation

results. Validity was considered as the extent to which an

instrument is measuring a concept that it is supposed to

measure. It can be further divided into different types of

validity, such as criterion-referenced validity, construct

validity and content validity. In the case of wearable sen-

sors, researchers are often interested in criterion-referenced

validity, which can be assessed by the correlation between

the sensor-derived outcome and the outcome of a reference

instrument that has already been validated [34, 35]. Con-

struct validity, also known as discriminant validity, is

commonly used by assessing the extent to which groups

that are supposed to produce different outcomes, indeed do

so, for example, by comparing PD with non-PD, or DBS

ON with DBS OFF.

Results

Selection process

In total, 552 articles were retrieved by the query. The

selection process led to the final inclusion of 27 articles. Of

those, 23 articles related to FOG, and 4 to falls. A complete

overview of the selection process is presented in Fig. 1.

Methodologies

FOG detection

A total of 23 articles investigated the use of wearable

sensors to assess FOG in PD [18, 28, 36–56] (Table 2). The

sample sizes varied from 1 [28] to 48 PD [51] per study,
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with a non-PD group being included in a few studies

[28, 40, 48, 51, 53, 56]. Disease severity, when reported,

ranged from 2 to 4 according to the Hoehn and Yahr scale.

Data were collected according to three types of protocols:

(1) a set of structured tasks performed in a laboratory

environment (n = 18); (2) a protocol performed in a lab-

oratory environment in which at least a part of which was

designed to capture naturalistic behaviour (n = 2); and (3)

natural or naturalistic behaviour in a home environment

(n = 3).

The types of sensors embedded in the devices worn by

the participants varied. Tri-axial accelerometers were used

in 22 articles, either as a single sensor (48%, n = 11), or

combined with gyroscopes (35%, n = 8), or magnetome-

ters (13%, n = 3). One study used electroencephalogram to

measure changes in the brain activity from pre-determined

areas during FOG episodes. Regarding the number of body

locations, 56% (n = 13) of the studies utilized one loca-

tion, while the other 44% (n = 10) used a combination of

two or more locations. The shin (66% of studies, n = 16; 4

times used as the single location) and waist (33% of

studies, n = 8; 3 times as the single location) were the

most common body locations for the devices, although nine

other locations were also explored (Fig. 2).

Falls: detection and fall risk analysis

Four articles on falls were retrieved: one article on fall

detection and three articles presented the use of wearable

sensors for analyzing fall risk. All protocols were per-

formed in a home-based setting (Table 3) [57–60], and the

sample size varied from one patient in a case report [57] up
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Fig. 1 Selection process for

eligible articles

Table 1 Search queries used for each database

Database Query Hits

Web of

science

(((TI = (sensor*) OR TS = (sensor*) OR TI = (device*) OR TS = (device*) OR TS = (wearable*) OR

TI = (wearable*)) AND (TS = (freezing*) OR TI = (freezing*) OR TI = (fall*) OR TS = (fall*)) AND

(TI = (Parkinson’s*) OR TS = (Parkinson’s*))))

272

PubMed ((‘‘Freezing of gait’’ [tiab] OR Freezing* [tiab] OR fall* [tiab]) AND (wearable* [tiab] OR sensor* [tiab] OR device*

[tiab]) AND Parkinson* [tiab])

280
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Table 2 Characteristics of studies that investigated wearable sensors for FOG detection (n = 23)

Authors Sample Device

locations (n)

Type of sensor Procedures ON OFF References Validity results Tested

for

cueing

FOG detection at home

Martı́n [36] 6 PD FOG? Waist (1) Accelerometer 4 Different

activities: (1)

showing the

home, (2) a

FOG

provocation

test, (3) a

short walk

outdoors and

(4) walking

with a dual

task activity.

Also: a false

positive

protocol

4 4 Labeled video Sensitivity: 91.7%

Specificity: 87.4%

–

Ahlrichs [37] 8 PD

FOG? 12

PD FOG-

Waist (1) Accelerometer Scripted

activities

simulating

natural

behaviour at

the patients’

homes

4 4 Labeled video Sensitivity: 92.3%

Specificity: 100%

–

Tzallas [38] Lab 24 PD

FOG

unknown

Home 12 PD

FOG

unknown

Wrist (2)

Shin (2)

Waist (1)

Accelerometer

Gyroscope

Lab A series of

tasks

Home 5

consecutive

days of free

living

4 4 Lab Live

annotation

by clinician,

confirmed

by video

analysis

Home Self-

reports (no

further

details

provided)

Lab

Accuracy 79%

(sensitivity and

specificity not

reported)

Home Mean

absolute error:

0.79 (no further

explanation

provided;

accuracy,

sensitivity and

specificity not

reported)

–

FOG detection at the laboratory (‘‘free’’ elements included in protocol)

Mazilu [39] 5 PD FOG? Shin (2) Accelerometer

Gyroscope

Magnetometer

3 Sessions on 3

different days

(2 consisting

of walking

tasks, 1 ‘‘free’’

walking in

hospital and

park)

? ? Labeled video Sensitivity: 97%

Specificity: not

reported (only

reported: false

positives count:

27 vs. 99 true

positives)

4

Cole [40] 10 PD FOG

unknown

2 non-PD

Forearm

ACC (1)

Thigh

ACC (1)

Shin ACC

& EMG

(1)

Accelerometer

EMG

Unscripted and

unconstrained

activities of

daily living in

apartment-like

setting

? ? Labeled video Sensitivity: 82.9%

Specificity: 97.3%

–
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Table 2 continued

Authors Sample Device

locations (n)

Type of sensor Procedures ON OFF References Validity results Tested

for

cueing

FOG detection at the laboratory (only tasks)

Rezvanian

[41]

Same as

used in

[17]

Shin (1)

Thigh (1)

Lower back

(1)

Accelerometer Same as used in

[2]

4 4 Same as used

in [2]

Sensitivity/

specificity

Shin only: 84.9/

81%

Thigh only: 73.6/

79.6%

Lower back only:

83.5/67.2%

–

Zach [42] 23 PD

FOG?

Waist (1) Accelerometer A series of

walking tasks

– 4 Labeled video Sensitivity: 78%

Specificity: 76%

–

Kim [43] 15 PD

FOG?

Waist (1)

Trouser

pocket (1)

Shin (1)

Accelerometer

Gyroscope

walking task

(with single

and dual

tasking)

? ? Labeled

video.

Sensitivity/

specificity

Waist only:

86/92%

Trouser pocket

only: 84/92%

Shin only: 81/91%

–

Coste [44] 4 PD FOG

unknown

Shin (1) Accelerometer

Gyroscope

Magnetometer

Walking task

with dual

tasking

? ? Labeled video Sensitivity: 79.5%

Specificity: not

reported (only

number of falls

positives: 13 vs.

35 true positives)

–

Kwon [45] 12 PD

FOG?

Shoe (2) Accelerometer A walking task 4 – Labeled video Sensitivity: 86%

(from graph)

Specificity: 86%

(from graph)

–

Yungher [46] 14 PD

FOG?

Lower back

(1)

Thigh (2)

Shin (2)

Feet (2)

Accelerometer

Gyroscope

Magnetometer

TUG in a 5-m

course.

– 4 Labeled video No validity/

reliability

measures were

reported

–

Djuric-Jovici

[47]

12 PD FOG

unknown

Shin (1) Accelerometer

Gyroscope

To walk along a

complex

pathway,

created to

provoke

freezing

episodes

– 4 Labeled video Sensitivity/

specificity

FOG with tremor:

100/99%

FOG with

complete motor

block: 100/100%

–

Tripoliti [48] 11 PD

FOG? 5

non-PD

Wrist (2)

Shin (2)

Waist (1)

Chest (1)

Accelerometer

Gyroscope

A series of

walking tasks

4 4 Live

annotation

by clinician,

confirmed

by video

analysis

Sensitivity: 81.94%

Specificity: 98.74%

–
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Table 2 continued

Authors Sample Device

locations (n)

Type of sensor Procedures ON OFF References Validity results Tested

for

cueing

Moore [49] 25 PD

FOG?

Lower back

(1)

Thigh (2)

Shin (2)

Feet (2)

Accelerometer TUG on a

standardized

5-m course

– 4 Labeled video ICC number of

FOG/ICC percent

time frozen/

sensitivity/

specificity

All sensors: 0.75/

0.80/84.3/78.4%

1 shin only: 0.75/

0.73/86.2/66.7%

Lower back only:

0.63/0.49/86.8/

82.4%

–

Morris [50] 10 PD

FOG?

Shin (2) Accelerometer TUG on a

standardized

5-m course

– 4 Labeled video ICC for number of

FOG episodes:

0.78

ICC for percentage

time frozen: 0.93

–

Mancini [51] 21 PD

FOG? 27

PD FOG-

21 non-PD

Lower back

(1)

Shin (2)

Accelerometer

Gyroscope

3 Times the

extended

length iTUG

– 4 FOG scale

and ABC

scale, and

comparison

between

groups (PD

FOG?, PD

FOG- and

non-PD)

Criterion validity

Frequency ratio

and FOG scale:

p = 0.6,

p = 0.002

Frequency Ratio

and ABC scale:

p = -0.47,

p = 0.02

Discriminant

validity

Frequency ratio

was larger in PD

FOG? compared

to PD FOG-

(p = 0.001), and

in PD FOG-

versus non-PD

(p = 0.007)

–

Niazmand

[52]

6 PD FOG? Thigh (2)

Shin (2)

Bellybutton

(1)

(sensors

embedded

in pants)

Accelerometer A series of

walking tasks

? ? Labeled video Sensitivity: 88.3%

Specificity: 85.3%

–

Bachlin [17] 10 PD

FOG?

Shin (1) Accelerometer A series of

walking tasks

4 4 Labeled video Sensitivity: 73.1%

Specificity: 81.6%

4

Jovanov [28] 1 PD FOG

unknown

4 non-PD

Knee (1) Accelerometer

Gyroscope

Walking task. ? ? Labeled video No validity

measures were

reported

4

Moore [53] 11 PD

FOG? 10

non-PD

Shin (1) Accelerometer Walking task

along complex

pathway to

provoke FOG

4 4 Labeled video Sensitivity without

calibration: 78%

Sensitivity with

calibration: 89%

Specificity not

reported

–
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to 107 PD in a cross-sectional study [59]. One study

reported disease severity and had an average Hoehn and

Yahr score of 2.6 ± 0.7 [59]. All studies used tri-axial

accelerometers. One study combined this sensor with force

and bending sensors [58]; another with gyroscopes [60].

Sensor body locations included chest, insole (i.e., under the

arch of the foot), and lower back.

Validation

FOG detection

Among the 23 articles investigating FOG detection, 18

reported measures of validation performance (e.g., sensi-

tivity, specificity, or accuracy) [17, 36–45, 47–49, 52–55],

three studies used correlation measures, correlating the

wearable-derived measure with the period of freezing or
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Table 2 continued

Authors Sample Device

locations (n)

Type of sensor Procedures ON OFF References Validity results Tested

for

cueing

Mancini [56] 16 PD

FOG? 12

PD FOG-

14 non-PD

Shin (2)

Waist (1)

Accelerometer

Gyroscope

TUG on a 7-m

course

Turning 360 in

place for

2 min

– 4 Labeled video Criterion validity

Freezing ratio

duration 9

clinical ratings:

p = 0.7,

p = 0.003

Freezing Ratio

duration 9 FOG

questionnaire:

p = 0.5, p = 0.03

–

Capecci [55] 20 PD

FOG?

Waist (1) Accelerometer TUG on a

standardized

5-m course

4 – Labeled video Algorithm

1/Algorithm 2

Sensitivity: 70.2/

87.5%

Specificity: 84.1/

94.9%

Precision: 63.4/

69.5%

Accuracy: 81.6/

84.3%

AUC: 0.81/0.90

–

Handojoseno

[54]

4 PD FOG? Scalp (8) EEG TUG on a

standardized

5-m course

4 – Labeled video Sensitivity occipital

channel: 74.6%

Specificity occipital

channel: 48.4%

Accuracy occipital

channel: 68.6%

–

FOG freezing of gait, PD Parkinson’s disease, FOG? PD patients with diagnosed freezing of gait events, FOG: PD patients with no diagnosed

freezing of gait events, SC skin conductivity, ECG electrocardiogram, non-PD participants that have not been diagnosed with PDm ACC three tri-

axial accelerometer, TUG timed-up-and-go test, ICC Intraclass correlation, iTUG automated timed-up-and-go test, FOG questionnaire freezing

of gait questionnaire, ABC scale the activities-specific balance confidence scale, AUC area under curve
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Table 3 Characteristics of studies that investigated wearable sensors for fall and fall risk (n = 4)

Authors Sample Device

location

(n)

Type of sensor Measure(s) Procedures ON OFF References Validity results

Fall detection at home

Tamura

[57]

1 PD Chest

(1)

Accelerometer Detection of

falls

Participant

carried the

sensor in daily

life

4 4 Fall diary Criterion validity

19 out of 22 falls

were detected.

Specificity/false

positives not

reported

Fall risk at home

Ayena

[58]

7 PD

12 Young

non-PD

10

Elderly

non-PD

Insole

(4)

Accelerometer

Force sensor

Bending

sensor

Proposed new

OLST score

(with

incorporation

of both

iOLST and

score derived

from balance

model)

Participants

performed the

OLST at home

as part of a

serious game

for balance

training

4 – iOLST score

Comparison

between

groups (PD

vs young

non-PD vs

elderly non-

PD, ground

type)

Criterion validity:

Proposed OLST score

was not

significantly

different from

iOLST score in all

groups

Discriminant validity

- Proposed OLST

score was

significantly

different between

PD and non-PD

subjects

- Proposed OLST

score was

significantly

differed between

ground types

Weiss

[59]

107 PD Lower

back

(1)

Accelerometer Anterior-

posterior

width of

dominant

frequency

Patients wore the

sensor for 3

consecutive

days at home

4 4 Comparison

with BBT,

DGI and

TUG

Among non-

fallers: time

until 1st fall

during

1-year

follow-up

Comparison

between

fallers

(n = 40)

and non-

fallers

(n = 67)

based on fall

history

Criterion validity

Anterior-posterior

width was

significantly

correlated with

BBT (r = -0.30),

DGI (r = -0.25)

and TUG

(r = 0.32)

Among non-fallers:

anterior-posterior

width significantly

associated with time

until 1st fall

(p = 0.0039, Cox

regression corrected

for covariates)

Discriminant validity

Anterior-posterior

width was larger

(p = 0.012) in the

fallers compared to

the non-fallers
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number of FOG events [50, 51, 56], and two studies did not

report validity measures [28, 46].

Overall, validity values ranged from 73 to 100% for

sensitivity, and from 67 to 100% for specificity, and

accuracy ranged from 68% up to 96%. Validity measures

are summarized and compared across protocol setups in

Figs. 3 and 4.

Fall detection and fall risk analysis

One article investigated the use of wearable sensors to

detect falls, by comparing the data from a self-reported

diary to the sensor data. The sensor captured 19 fall events

from a total of 22 self-reported events [57].

Three articles presented the use of wearable sensors for

analyzing fall risk. All of them reported discriminant

validity by comparing sensor-derived outcomes between

different groups, such as fallers and non-fallers or PD

versus non-PD (see Table 3 for details). Weiss et al. [59]

reported an illustrative approach, whereby the 107 partic-

ipating PD patients wore one sensor in the lower back and

made diary annotations about fall events. The sensor data,

collected remotely in the patient’s home, were subse-

quently used to calculate a fall risk index. The time until
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(sensitivity) in FOG detection

Table 3 continued

Authors Sample Device

location

(n)

Type of sensor Measure(s) Procedures ON OFF References Validity results

Iluz

[60]

40 PD Lower

back

(1)

Accelerometer

Gyroscopes

Detection of

missteps

Laboratory

Walking tasks

designed to

provoke

missteps

(including dual

tasking and

negotiating

with obstacles)

Home

Participants

worn the

devices for 3

days during

day time

4 4 Laboratory

Notation by

clinicians

Labeled video

Home

Comparison

of groups

(fallers vs.

non-fallers)

Criterion validity

Laboratory:

Hit ratio: 93.1%

Specificity: 98.6%

Discriminant validity

Home:

Odds ratio of

detection 1 or more

missteps in fallers

vs non-fallers: 1.84

(p = 0.010, 95%

confidence interval

1.15–2.93)

PD Parkinson’s disease patients, OLST one-leg standing test, iOLST automatic one-leg standing test, BBT Berg balance test, DGI dynamic gait

index, TUG, timed-up-and-go
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first fall was significantly lower in subjects with a higher

variable gait pattern (log rank test: p = 0.0018, Wilcoxon

test: p = 0.0014).

Discussion

This review included 27 articles, 23 on FOG, and four on

falls. FOG studies were performed either in a laboratory or

at home, with different types of protocols (structured ver-

sus free-movement). The shin (16/28 studies) was the most

common device location and tri-axial accelerometers (26/

28 studies) the most common sensor type. Sensitivity

ranged from 73% to 100% and specificity ranged from 67%

to 100% for the detection of FOG. Fall and fall risk studies

were all home-based, using mostly one device (3/4 studies)

containing tri-axial accelerometers. Sensors were posi-

tioned on the chest, insole, and lower back. The systems

detected falls or quantified fall risk by various approaches

and with varying degrees of validity.

FOG detection

The results in this review support the potential for wearable

devices. In the laboratory, systems showed a moderate to

high specificity and sensitivity, which are in line with other

evidence that wearable systems detecting FOG are already

well validated in a laboratory setting [30]. Moreover,

promising results were also achieved in studies performed

in the home environment. Interestingly, the comparison of

validity measures in terms of sensitivity and specificity

(Figs. 3, 4) suggests that wearable sensors are able to

accurately detect FOG, independent of study protocol (e.g.,

home versus laboratory environment; structured versus

unstructured protocols) and system design (e.g., one sensor

only versus multiple sensors, and one device versus a set of

combined devices in different body locations). However,

one should be cautious when directly comparing reported

performance between studies, for a number of reasons: in

particular, one should consider additional factors, such as

algorithm used, outcome definitions, data analysis meth-

ods, and the intended application of the system.

First, even though FOG is a well-defined symptom [8],

what objectively constitutes FOG is unclear. The challenge

lies in rigorously defining, from an algorithmic point of

view, such a complex event, which can appear in different

forms and intensities. Furthermore, the definition of the

measured outcome has an important impact upon instru-

ment validity assessment. In this review, some studies only

included long-duration FOG episodes. Omitting small FOG

episodes may lead to inaccurate estimates of FOG detec-

tion rates. A comprehensive definition such as that used by

Djuric–Jovici and colleagues [47], differentiating between

FOG with trembling and FOG with complete motor blocks

prior to video labeling and test properties, seems to address

the problem by incorporating different types of FOG

events. However, this definition was not used in other

studies. A clear and comprehensive definition would

improve the comparability of instrument performance.

Second, the intended application of the instrument is

another aspect to be considered in FOG detection. It is

attractive to aim for rates of 100% specificity and sensi-

tivity. However, this may result in signal processing

operations which require substantial computational
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resources. As illustrated by Ahlrichs [37], the detection of

FOG episodes was achieved with high sensitivity and

specificity, but the data processing was time-consuming

with delays of up to 60 s. Similarly, algorithms with high

accuracy may require substantial computational resources

which may have an adverse effect on power consumption

and hence battery life for non-intrusive, portable devices.

This fact may prevent the use of such systems for real-time

detection and cueing. Therefore, it is reasonable to con-

clude that at this point, the acceptability of instrument

performance in detection of FOG relate to its application,

and many of these algorithms will require substantial

mathematical and engineering efforts in order to reduce

computational delays to an acceptable level. Furthermore,

some algorithms required individual calibration and others

did not, which also has practical consequences for appli-

cations in clinical and research practice.

Finally, although there exists the potential for these

instruments being applied to long-term monitoring in free

living conditions, only a few systems were actually vali-

dated in the home environment. Therefore, the majority of

the technology available lacks ‘‘ecological’’ validation.

Thus, further research using larger sample sizes, longer

follow-up periods under more realistic home environments

is necessary.

Fall detection and fall risk calculation

Del Din and colleagues described that real-world detection

of falls is a substantial challenge from a technical per-

spective, and almost all evidence in their review was lim-

ited to controlled settings and young healthy adults [30].

This finding is confirmed in this review, most clearly

illustrated by the fact that we only found one article

reporting on fall detection accuracy in PD. However, it is

possible that this small number of articles is not only a

result of the complexity of capturing falls in PD under

realistic, free-living conditions. It certainly highlights an

area where the validity of wearable sensors still needs to be

examined. In addition, fall risk calculation has the potential

to provide objective information before the fall event

happens, which may be more valuable than simply count-

ing the number of events and dealing with the

consequences.

Fall risk estimation has a clear relevance for clinical

practice [58]. Falls are common and disabling, even in

early PD [61]. In addition, falls are also related to physical

injury [61], high hospitalization cost [62], and social/psy-

chological impact [63], either on their own or due to the

anticipatory fear of falling [64]. Even though the number of

retrieved articles investigating fall risk calculation was not

high, the results seem to confirm the potential for wearable

sensors to accurately calculate fall risk for PD.

Conclusion

This systematic review presents an overview of studies

investigating the use of wearable sensors for FOG and falls

in Parkinson’s disease. Despite promising validation ini-

tiatives, study sample sizes are relatively small, partici-

pants are mainly in early stages of the disease, protocols

are largely laboratory-based, and there is little consensus

on algorithms analysis. Further work in ecological valida-

tion, in free-living situations, is necessary. There also is a

lack of consistency in outcomes measured, methods of

assessing validity, and reported results. Given these limi-

tations, the validation of sensor-derived assessments of PD

features would benefit from increased collaboration among

researchers, aligning data collection protocols, and sharing

data sets.
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